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Two-magnon states of the alternating ferromagnetic Heisenberg 
chain 
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Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 

Received 14 June 1989 

Abstract. In this paper we examine the nature of two-magnon excitations in the alternating 
bond ferromagnetic S = f spin chain. Both a direct analytic approach as well as a method 
based on a scaling transformation are used to study the bound state branches and their 
relationship to the two-magnon continuum. Several features are expected to be observable 
in two-magnon Raman scattering experiments. 

1. Introduction 

In this paper we study the nature of the excitations in the S = $ alternating bond 
ferromagnetic Heisenberg spin chain. It is well known from the work of Bethe [l] that 
the uniform ferromagnetic chain has a two-magnon bound state which lies below a 
single continuum of two-magnon scattering states for all values of the total wavevector 
K and that the energy of this state is equal to one half of the one-magnon state. 
In a chain with alternating bond strengths the usual sinsuoidal spin-wave, or one- 
magnon, spectrum is split up into two branches, which we shall call the ‘acoustic’ and 
‘optic’ modes by analogy with the diatomic chain model in lattice dynamics. Three 
separate two-magnon continua therefore follow from the non-interacting combinations 
of the optic and acoustic branches and are separated by gaps when plotted as a 
function of energy and total wavevector. Our interest in this paper is to determine 
the structure of the two-magnon spectra resulting from the interaction between these 
different branches of magnons. The dispersion relations of the bound states have 
been studied previously by Krupennikov [2] using a direct analytic approach. He then 
solves the resulting equations using first-order perturbation theory in the limit of both 
strong and weak bond alternation. We find that the two-magnon spectrum is much 
more complicated than one would expect based on his results and also in comparison 
with other models which have already been solved, such as the next-nearest-neighbour 
(NNN) ferromagnetic chain [3]. 

We carry out our calculations using two different methods: firstly we use a direct 
analytic approach which can be considered as a generalisation of the Bethe ansatz [l] 
for the uniform chain and secondly we use a scaling approach recently introduced by 
Southern et a1 [4]. Our analytic approach is closely related to the work of Krupennikov 
[2] but there are some important differences in the final results. In particular, we find 
that a bound state exists in one of the gaps at K = 0 and is possibly a good candidate 
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for detection by a light-scattering experiment. The scaling method is well suited to 
the calculation of response functions, including the bound states, and can be used to 
investigate resonant states inside the continuum. It is also easily extended to higher 
values of the spin. 

In section 2 we write down the basic set of equations for the two-magnon excitations 
and show how the calculation of the bound-state energies reduces to the solution of 
a constraint equation. We discuss the nature of the solution in the various regions of 
energy and total wavevector. In section 3 we solve for the bound states numerically 
and plot the branches. The scaling approach is described in section 4 where results 
for resonant states are also described. In concluding with section 5 we consider the 
possibility of extending the analytic calculation to the antiferromagnetic version of the 
model which has important applications in spin-Peierls theory [ 5 ] .  

2. The model and its formal solution 

The Hamiltonian for the alternating ferromagnetic Heisenberg spin chain is given by 

n= 1 

where S, are the usual S = i Pauli operators associated with site m and J , ,  J2 are 
the bond strengths, both of which will be taken to be positive. We shall assume that 
J2 5 J, without loss of generality. The ground state of this model is the completely 
aligned state and the magnetisation will be chosen to be along the z axis. 

The spin-wave, or one-magnon, states can be written as 

where the ket In) represents the state with the nth spin flipped relative to the ground 
state. Substituting this expression into the Schrodinger equation H I y )  = Ely) we 
obtain the following equations for the amplitudes a2,, and a2n+l : 

where the energy E of the one-magnon state is measured relative to the ground state 
energy E,, = -(J1 + J2)N/8 and we have set fi  = 1. This pair of equations is formally 
identical to that obtained for phonons on a diatomic chain [6] .  The solution can be 
written as 

a2,, = aexp(2ink) 

a2n+l = P exp(i(2n + 1)k) 

with -n/2 < k < n/2. The dispersion relation [2] is 

(4) 

E: = iJ1 + iJ2 + ip JJ; + 5; + 25, J2 cos 2k 
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k 

Figure 1. The two branches (p = kl) of the one-magnon dispersion curve for the alternating 
bond chain with J ~ / J I  = 0.5 (full curve) and JZ = J I  (broken curve). The energy is in units 
of (51 + J z ) .  

where p = f l  labels the two branches. We shall designate the upper branch (p = +1) 
of this relation 'optic' and the lower branch (p = -1) 'acoustic' by analogy with the 
phonon problem. These branches are shown in figure 1. There is a gap between the 
branches at k = 7c/2 which is equal to J, -J2. We anticipate that the two-magnon 
excitation spectrum will exhibit similar behaviour. 

The two-magnon state can be written as 

where the amplitudes for the four possible configurations of the excitations (even-even, 
even-odd, odd-even, odd-odd) have been written separately. The even-even and odd- 
odd amplitudes with m = n are unphysical for S = 1 but are retained because they 
can be used to simplify the solution which follows. Substituting in the Schrodinger 
equation we obtain the following equations for the amplitudes if m =- n :  



9902 S C Bell et a1 

We have used the variable R = E - J, - J ,  to simplify the expressions. The first set 
of equations is valid for separations greater than one and so describes non-interacting 
magnons. The second set of equations takes into account the possibility of the flipped 
spins being adjacent; this results in different equations which we shall call the constraint 
equations. Following Bethe's fundamental work on the antiferromagnetic chain we can 
express the constraints in (8) as follows [l, 21: 

using the unphysical amplitudes representing spin flips on the same site. The equations 
now have the form of the non-interacting magnon case for all m 2 n and it is possible 
to solve them by a generalisation of the one-magnon wavefunction for the diatomic 
chain 

= U exp(2ik1 n + 2ik,m) 

a2n-1,2m = P exp(ikl (2n - 1) + 2ik2m) 

a2n,2m+l = y exp(2ikln + ik2(2m + 1)) 

a2n+1,2m+l = 8 exp(ik, (2n + 1) + ik2(2m + 1)) 

where k, and k, are the wavevectors of the individual magnons. Substituting this into 
the non-interacting equations produces a matrix eigenvalue equation 

with 

2A, = J ,  exp(fik,) + J ,  exp(+ikl) 

2B+ - = J ,  exp(+ik,) + J ,  exp(+ik,) 

The secular equation is 

R4 - 2R2(1AI2 + lBI2) + (IAl2 - 1B12)2 = 0 (13) 

where [AI2 = A+A- and lB12 = B+B-. Note that IAI2 and IBI2 will only be real if k, 
and k, are real, otherwise they are complex. The secular equation can be solved for 51 
and hence the two-magnon excitation energy E yielding 

where K and q are the total and relative wavevectors defined as K = k, + k2 and 
2q = k ,  - k, respectively. The indices p1 and ,U, take the values +1 independently and 
label the various branches of the two-magnon spectrum. This expression is clearly just 
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the sum of the energy of two non-interacting magnons. The corresponding eigenvectors 
for each branch are 

We can plot the regions in the E versus K plane that correspond to real values of k ,  
and k, (or q) .  Figure 2(a) shows the boundaries of the various continua derived from 
(14). These boundaries can be calculated explicitly by finding the turning points of the 
expression for the energy as a function of q. The upper boundary of the optic-optic 
(0-0) continuum ( p ,  = y, = +l) and the lower boundary of the acoustic-acoustic 
(A-A) continuum ( p ,  = p 2  = -1) are given by the pair of curves 

El,* = J ,  + J ,  k 4 J ;  + 522 + 25, J ,  cos K 

and correspond to q = 0. The lower boundary of the 0-0 continuum and the upper 
boundary of the A-A continuum correspond to q = n/2 and are given by 

E,>& = J ,  + J ,  !c J J ;  + 522 - 25, J ,  cos K 

but only for K < K ,  = cosw1 ( J 2 / J 1 ) .  Thereafter these two curves correspond to internal 
van Hove singularities within the respective continua. For K > K ,  the boundaries are 
given by 

E3,* = J ,  + 5, k J ,  sin K .  (18) 

In this case q is now given by the expression cos2q = -(J, /J,)cosK, so q changes 
continuously from n/2 at K, to n / 4  at the zone boundary. The mixed-mode continuum 
( p ,  = -p2 )  has boundaries 

E4,* = J ,  + J ,  k 5, sin K (19) 

and q is given by cos 2q = - ( J 2 / J 1 )  cos K for all K .  

the secular equation (13) for cos2q: 
An alternative approach [2] to finding the boundaries of the continua is to solve 

cos 2q 

In general there are four complex values of q (occurring in complex conjugate pairs) 
for each value of (or E )  and K .  By considering the conditions for which q is real 
the boundaries can be recovered from this expression. Figure 2(b) shows the various 
regions of the E versus K plane as labelled by Krupennikov [2]. In regions I, I11 and 
V the physical solutions correspond to complex values of q whereas in regions 11, IV 
and VI some of the values of q are real. 

Having studied the non-interacting problem in some detail it is now possible to 
consider the constraint equations. To solve the complete set of equations (7) and (9) 
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K K 

Figure 2. (a) The two-magnon continuum branches and their boundaries. The vertical 
broken line indicates K,. (b )  Regions of the E versus K plane. The broken curve separating 
regions 111 and V is given by equation (18). The energy is in units of J1 and J2 = 0.5J1. 

we have to take non-interacting solutions and use a matching procedure to satisfy 
the constraint equations. However, in the limit of an infinite chain, we must reject 
solutions that correspond to exponentially increasing amplitudes. In the regions outside 
the continua, there are only two values of q,  q and 4, for every choice of E and K. 

To find the bound state energies we write the amplitudes as linear combinations of 
these solutions 

a2n,2m = exp(iK(n + m))[Caexp(-iq(2m - 2n)) + D?fexp(-iif(2m - 2n))] 

a2n-1,2m = exp(iK(n + m - $))[Cp exp(-iq(2m - 2n + 1)) + Dpexp(-iq(2m - 2n + l))] 
a2n,2m+l = exp(iK(n + m + !))[cy exp(-iq(2m - 2n + 1)) + ~yexp(-iq(2m - 2n + I))] 

a2n+1,2m+l = exp(iK(n + m + 1 ) ) [ ~ 6  exp(-iq(2m - 2n)) + ~6exp(-iif(2m - 2n))l (21) 
where C and D are arbitrary constants and q and 4 are the two values of the relative 
wavevector appropriate to the chosen values of E and K. Since m 2 n we must 
choose the imaginary parts of the q and 4 to be negative. The coefficients a, p, y ,  6 and 
the corresponding barred quantities are given by (15) once q and ij are determined. 
For finite chains both the exponentially rising and decaying terms would have to be 
included. The expression for the amplitudes with these additional terms would be in the 
form of a generalised Bethe ansatz [l]. Substituting (21) into the constraint equations 
and eliminating C and D we obtain 
aexp(-iiK) + 6 exp(iil.0 - 2y exp(-iq) - aexp(;iK) + 6 exp(-$iK) - 2p exp(-iq) 
aexp(-iiK) + Texp(iiK) - 2~exp(-iq) 

- - %exp($iK) + Texp(-iiK) - 2j?exp(-iq)* 
(22) 
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To solve (22) for the two-magnon bound states we have numerically scanned with 
respect to E through regions I, I11 and V in figure 2(b) for fixed values of K .  The 
solution of this equation will be considered in the next section. 

3. Dispersion relation of the bound states 

In region I, below the A-A continuum, we obtain bound states which are most easily 
understood by first considering the spectrum of the uniform bond chain in the reduced 
Brillouin zone -n /2  < K < n/2. The usual bound state below the continuum is folded 
back at K = n / 2  and consists of a lower and upper part which meet at the Brillouin 
zone boundary with no gap (see figure 3(a)). The upper part of this state is a true 
bound state even though it lies in the same region of energy as the continuum states. 

E 

K K 
Figure 3. (a) The two-magnon continuum (shaded region) and the bound state branch 
(crosses) of the uniform chain in the reduced zone. (b) The bound state branches (crosses) 
of the alternating bond chain for for J 2 / J 1  = 0.5. The broken curve separates regions 111 
and V as in figure 2(b). 

Figure 3(b) shows our results for the various bound state branches for J2/J1 = 0.5. 
In the alternating bond case, the lower state remains a true bound state but the upper 
state becomes a resonant state inside the continuum (region I1 of figure 2(b)) .  Near 
K = n /2  the upper state emerges below the continuum as a true bound state and is 
separated from the lower state by a gap at the Brillouin zone boundary. In the uniform 
limit, the gap between these two bound states vanishes linearly with J ,  - J ,  and the 
resonant state becomes a bound state for all values of K .  These results agree with those 
of Krupennikov [2] except for the presence of a gap at the zone boundary. He used 
first order perturbation theory about the uniform limit but his results are not correct at 
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Figure 4. The gap between the A-A bound states at K = n / 2  as a function of /z = 

(Ji - J2)/(J1 + 52). 

the first reduced Brillouin zone boundary where degenerate second order perturbation 
theory must be used. Figure 4 shows how the gap varies with A = (J1 - J2)/(J1 + 5,). 

In regions I11 and V of figure 3(b) we obtain another bound state branch below 
the mixed continuum. This state exists for all K and meets the continuum at K = n/2. 
However, for all K > K ,  the binding energy is extremely small. This bound state is a 
good candidate for observation using optical techniques. The binding energy of this 
state at K = 0 as a function of 1, is similar to the curve in figure 4. 

A final bound state branch exists in region V below the 0-0 continuum. This 
branch emerges from the 0-0 continuum into region I11 at a value of K slightly less 
than K,. At smaller values of K the state is a resonant state at the lower edge of the 
continuum. Again, the binding energy of this state at K = n /2  is similar to the result in 
figure 4. Both of the branches which lie in the continuum gaps change their character 
as they cross from region I11 to region V with increasing K. This is due to the fact 
that the two values of q are degenerate at the boundary of these regions. In region I11 
the imaginary parts of q and 4 are different and the bound bound is a superposition 
of two exponentially decaying functions. In region V the imaginary parts of the two 
values of q are the same but the real parts are different. 

We have therefore found bound state branches that we can associate with each 
continuum. The evolution of the branches as a function of the ratio of J ,  to J ,  is more 
complicated than the perturbation results of Krupennikov[2] would suggest. 

4. Scaling treatment of two-magnon excitations 

In the previous sections we have described an analytic approach to the solution of the 
Schrodinger equation. The treatment essentially consisted of expanding the interacting 
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two-magnon states in terms of the non-interacting one-magnon states. In this section 
we will describe a scaling approach to the problem which does not rely upon solving 
the one-magnon problem beforehand. This scaling approach has recently been used 
by Southern et a1 [4] to study the two-magnon excitations in general S quantum spin 
chains with uniform bonds and is easily extended to the alternating chain. 

We first express the four different types of amplitudes in (6) in terms of their centre 
of mass and relative coordinates as follows: 

- u ( l )  a2",2m - 2(m-n) ex~(iK(2n + 2m)/2) 

- J4) a~n+1,2m+l - 2(m-n) ex~(iK(2n + 2m + 2)/2) 

where K is the total wavevector of the two-magnon state. The four amplitudes for the 
relative coordinates are now defined to be the components of a vector as follows: 

Equations (7) and (8) can now be expressed concisely as 

MU,, = VpU2r+2 + V,U,,-, 

M,U, = VpU2 

r > 0 

r = 0. 

The matrices M ,  MO, Vp,  V, have the following form: 

o n  

n c; c1 n o  0 
0 n+J, 0 

M = ( : :  0 c2 C I *  'i) M O = (  0 0 0  0 n+J, 0 

0 0 0  0 0 -c1 -c; 

0 0  0 0 -c; 

v p = ( : - : : : : ; )  v m = ( :  : u 2 ; )  0 0  

where c1 = f J 1  exp(iiK) and c2 = +.I2 exp(5iK). 
The scaling approach involves performing a transformation on these equations 

which leaves their form invariant but reduces the number of degrees of freedom. If we 
choose the vector U, as our origin and eliminate every second column vector, then the 
equations can be rewritten in the same form with the matrices M ,  MO, Vp,  Vm redefined 
as 

MI = M - V,,,M-' Vp - VPM-' V, 

M i  = MO - VPM-' V ,  

Vi = VpM-l Vp 

vm = VmM-' vm. 
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The above transformation corresponds to a decimation procedure and has a scaling 
factor b = 2 . The spectral properties of the system are determined by iterating the 
transformation but a small positive imaginary part must be used in the excitation 
energy for convergence. Under iteration, the matrices Vp and V, approach zero (due 
to the complex energy) and hence the non-trivial solutions for the vector U, are 
determined from Det(Mim)) = 0 . 

If we add an inhomogeneous term to the equations (25), then we can use the above 
procedure to calculate the following two-magnon Green functions 

where i, j = 1,4. For example, if we add a column vector with a non-zero entry only in 
the j th  row to the right-hand side of the equation for U, in (25), the iteration procedure 
yields G:,. Figure 5 shows the imaginary part of various response functions at fixed 
K = n/10 for J 2 / J 1  = 0.5 plotted as a function of energy. We have taken J ,  = 1.0 
and a small imaginary part has been used in the energy. Within the regions 
of energy corresponding to the continuum states, 20 iterations are typically required 
for convergence. The imaginary parts of G$ and G$ describe the local densities of 
states for excitations on nearest-neighbour sites separated by the weak ( J J  and strong 
( J , )  bonds respectively. The imaginary part of G$ describes the case when the spin 
deviations are separated by two sites. All three response functions are sensitive to 
the A-A bound state just below the lower edge of the A-A continuum and a rather 
sharp resonant peak appears in each near E = 0.6. The mixed-mode bound state 
contributes to each just below the mixed continuum with the largest weight appearing 
in the response function which corresponds to two deviations separated by the strong 
bond J , .  All three response functions in figure 5 also show contributions from both 
the mixed-mode and optic-optic continua. There is a resonant state at the lower edge 
of the 0-0 continuum which emerges as a true bound state at larger K .  

As J ,  approaches J , ,  the gaps between the continua vanish along with their bound 
states. However, the A-A resonance sharpens up and becomes a true bound state (see 
figure 3(a)). 

5. Summary 

We have found the complete solution to the two-magnon spectrum of the alternating 
S = ferromagnetic Heisenberg chain. From both the analytic solution and the 
scaling calculations we see that this model has three bound state branches, two of 
which are additional to those appearing in the uniform chain. The methods described 
here are easily extended to S > and Hamiltonians which include both exchange 
and single-ion anisotropies. Based on previous studies [7, 81 of the uniform chain, the 
presence of these terms could yield additional bound states in the alternating bond 
case as well. Alternating interactions can also occur in layered materials which can 
exhibit quasi-one-dimensional character [9] and other materials may well be grown 
synthetically in a layered manner by molecular beam epitaxy. The A-A resonance and 
the mixed-mode bound state for K 1: 0 may be observable in light absorption or 
two-magnon Raman scattering experiments similar to those done in anisotropic but 
non-alternating quasi-one-dimensional magnets [lo]. 
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E 
Figure 5. The local densities of states at K = 71/10 for two spin deviations separated by (a) 
a strong bond J1, (b)  a weak bond J2 and (c) two bonds. 

One of the reasons for considering the alternating bond model was as a first 
step towards studying the excitations of the alternating antiferromagnetic chain. The 
solution of the alternating bond antiferromagnetic model would require the solution 
of the m-magnon problem for arbitrary m. The energy of the non-interacting magnons 
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will be a sum of m-terms as in (14) with m wavevectors to be determined. However our 
results suggest that the alternating antiferromagnetic chain is non-integrable. Haldane 
[ l l ]  has conjectured that for Heisenberg spin chains to be integrable their m-magnon 
bound state dispersion curves must be continuous over min(m, 2s) Brillouin zones. 
This clearly does not hold for the alternating chain since the A-A bound state has a 
gap at the first reduced Brillouin zone boundary. We therefore believe that no further 
progress can be made towards an exact solution of the alternating antiferromagnetic 
chain using an approach based on the Bethe ansatz. 

alternating bond antiferro- 
magnetic model has a gap appearing in the spin-wave spectrum at K = 0 in contrast 
to the uniform bond model which is gapless. This difference can be understood as 
a result of non-linear zero-point fluctuations, and is closely related to the so called 
‘Haldane’ gap [12] in the S = 1 uniform antiferromagnetic chain. In fact the alternating 
chain can be thought of as a specific representation of that model as it has a unit cell 
containing integer spin albeit zero or one. Recently Krivoruchko [13] has studied the 
role of quantum fluctuations in a chain composed of two types of alternating spins. 
The ferromagnetic version of this latter model in which the spin magnitude rather 
than the exchange bond magnitude alternates should also exhibit two-magnon spectra 
similar to the results reported here. 

Finite size calculations [5] have shown that the S = 
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